Exercise 3

Problem 3.1:

Simulate the PMOS current mirror circuit of Figure 3.1 using AIM-spice. Use geometry parameters W=20 μm and L=2.0 μm for both transistors, and the MOSFET model P1 that is described in the file '*modelcards v30.cir*'.

a) Set the bias current $I_{bias} = 50 \ \mu A$, $V_{DD} = 1.7 \ V$, $R_L = 18 \ k\Omega$. How much is the current I_{out} ? How much is the output voltage V_{out} ? ($I_{out} \approx 52 \ \mu A$, $V_{out} \approx 0.9 \ V$) b) Use the same parameter values as in a), but set now $V_{DD} = 2.3 \ V$. How much are I_{out} and V_{out} now? ($I_{out} \approx 56 \ \mu A$, $V_{out} \approx 1 \ V$) c) Use the same parameter values as in a), but set now $R_L = 12 \ k\Omega$ and $V_{DD} = 1.7 \ V$. How much are I_{out} and V_{out} now? ($I_{out} \approx 54 \ \mu A$, $V_{out} \approx 0.6 \ V$) d) Calculate the output impedance $r_{out} = | \Delta V_{out} / \Delta I_{out}|$ of the current mirror circuit based on the results from a) and c) ($r_{out} \approx 130 \ k\Omega$). What is the Power Supply Rejection Ratio of this circuit (PSRR ≈ 0.1)? PSRR is defined as PSRR $= \Delta V_{out} / \Delta V_{DD}$.

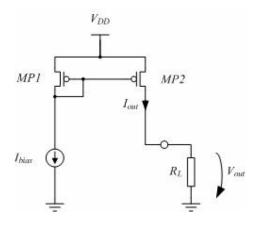


Figure 3.1

Problem 3.2:

Simulate the current mirror circuit of Figure 3.2 using AIM-spice. Use geometry parameters W=20 μm and L=2.0 μm for all the four transistors, and the MOSFET model P1 that is described in the file '*modelcards_v30.cir*'.

a) Set the bias current $I_{bias} = 50 \ \mu A$, $V_{DD} = 2.0 \ V$, $R_L = 18 \ k\Omega$. How much are I_{out} and V_{out} ? ($I_{out} \approx 50 \ \mu A$, $V_{out} \approx 0.9 \ V$)

b) Use the same parameter values as in a), but set now $V_{DD}=2.3 V$. How much are I_{out} and V_{out} now? ($I_{out} \approx 50 \ \mu A$, $V_{out} \approx 0.9 \text{ V}$)

c) Use the same parameter values as in a), but set now $R_L=12 k\Omega$ and $V_{DD}=2.0 V$. How much are I_{out} and V_{out} now? ($I_{out} \approx 50 \ \mu A$, $V_{out} \approx 0.6 \text{ V}$)

d) What is the output impedance r_{out} of this circuit? ($r_{out} \approx 6 M\Omega$) What is the PSRR of this circuit? (PSRR < 0.01) Compare the results in this problem with the results of Problem 3.1.

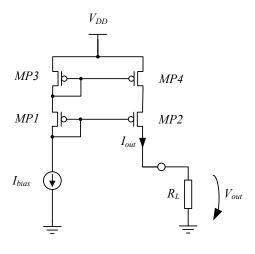


Figure 3.2

Problem 3.3:

The source follower circuit of Figure 3.3 has the following parameters:

 $W/L = 100 \ \mu\text{m}/1.6 \ \mu\text{m}$ $\mu_n C_{ox} = 90 \ \mu\text{A}/\text{V}^2$ $\mu_p C_{ox} = 30 \ \mu\text{A}/\text{V}^2$ $I_{bias} = 100 \ \mu\text{A}$ $\gamma_n = 0.5 \ \text{V}^{1/2}$ $r_{ds-n} (\Omega) = 8000L(\mu\text{m})/I_D(\text{mA})$ $V_{SB} = 2 \ \text{V}$ $R_{in} = 180 \ \text{k}\Omega$ $C_L = 0.5 \ \text{pF}$ $C_{gs1} = 0.2 \ \text{pF}$ $C_{gs1} = 15 \ \text{fF}$ $C_{sb1} = 40 \ \text{fF}$ $C_{in} = 30 \ \text{fF}$

- a) Find the output impedance of the source follower at low frequencies.
- b) Find the voltage gain of the circuit at low frequencies.

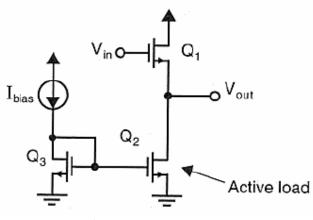


Figure 3.3